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S1 Materials and Methods

S1.1 Data Sources

We quantify street-network sprawl using three different time series, discussed
briefly in the main text. Here, we provide additional detail on each series.

1. The TIGER/Line series computes our measures of sprawl for all counties
in the US, using four different vintages of the TIGER/Line shapefiles:
1992, 2000, 2010 and 2014. Because of lags in the data gathering and
release process, we assume each vintage represents the characteristics of
the street network in the previous year (1991, 1999, 2009 and 2013).!

2. The Census-based series computes our measures of sprawl for all counties
in the US, using the 2014 vintage of the TIGER/Line shapefiles. We
construct earlier years of the time series through assigning the median
year built of residential units in each census block group (as reported
in the US Census Bureau 2007-11 American Community Survey) to all
streets in that block group. This yields a time series from “1939 or earlier”
(the earliest category for year built that is reported) to “2005 or later”.

3. The Parcel-based series also computes our measures of sprawl using the
2014 vintage of the TIGER /Line shapefiles. We construct earlier years of
the time series by using tax records for individual land ownership parcels,
which we obtain directly from county governments or from the commercial
aggregator Boundary Solutions. Figure S1 shows the locations of the 226
counties for which we have parcel data, and the number of parcels from
each. We match each parcel to the street network using a combination
of address and geospatial data, and succeed in matching 95.1% of the
23,191,172 parcels for which we have year built information. Section S1.2
describes our matching algorithm in detail. We then assign to each street
edge the year in which the earliest structure on that edge was built. In
other words, we assume that a street was built at the same time as its
earliest structure. For each node, we assign the year of the most recent
connected edge. This yields a time series from 1920 (before which county
data on the year a structure was built appear to be less reliable) to 2012,
for the 226 counties that are at least partly urbanized, and for which we
could obtain suitable parcel data. The 226 counties in the parcel-based
series account for 9.7% of the 2,338 counties and county-equivalents in the

IThe year in which an edge first appears in the TIGER/Line files varies depending on the
Census Bureau update cycle; there is often a lag of many years between construction and
incorporation into TIGER/Line. While it is technically possible to construct an annual time
series from 1992-2014, a comparison to historic satellite imagery suggested that the data do not
support an annual temporal resolution. Moreover, the MAF/TIGER Accuracy Improvement
Project (2003-08) appears to have introduced inconsistencies into many counties which were
subsequently corrected (for example, by classifying driveways as regular urban streets). We
therefore restrict our time dimension to the earliest vintage, the two years of the decennial
census, and the most recent vintage.



US with at least one urbanized block group; and a higher (32.7%) share
of the urbanized area population.

The three different time series exhibit trends that are generally consistent (Fig-
ure 1 in the main text). However, there are differences in levels between the
TIGER/Line and Census-based series (where our data include all nodes in the
underlying Census Bureau files), and the parcel-based series (where our data are
restricted to the subset of nodes where at least one connected edge has a parcel
with year-built information). In practice, this means that a lower proportion
of deadends is estimated from the parcel-based series, because (i) deadends are
more likely to be service or other access roads without associated buildings; and
(ii) missing data (e.g. lack of year-built information) is more likely to affect
deadends, as missing data for a single edge will lead to missing data for the
node. In contrast, data would need to be missing for all 3 or 4 connected edges
for this to happen with a 3- or 4-degree node. Mean nodal degree of the 2013
stock was 2.73 according to the TIGER /Line series, and 2.83 according to the
parcel-based series. However, these differences are unlikely to affect the analysis
in this paper, because trends over time are consistent between the two series.

S1.2 Matching parcels to street edges

This section provides more details of our matching algorithm to link county
assessor parcels (which provide the information on the year a structure was
built) with edges (i.e., street segments).

Our matching algorithm uses two main inputs for each parcel: (i) the edges
that are within 20m of the boundaries of a given parcel; and (ii) the geocod-
ing functionality in ESRI’'s ArcGIS software. Figure S2 shows the process for
matching parcels to edges for the 216 of 226 counties in the parcel dataset that
have address data, and the percentage of matches that is obtained through each
matching method. For the 10 counties where the parcel dataset omits address
data (but includes year-built information), a simplified version of the algorithm
is used: a parcel is matched to an edge if and only if there is a unique edge
within 10m of the parcel boundary.

We calculate our measures of street-network sprawl at the level of individual
nodes and edges, before aggregating (where required) to census block groups,
metropolitan regions and other geographic units. Where two nodes are within
15m of each other, we treat them as a single node for purposes of calculat-
ing nodal degree. As shown in Figure S3, this procedure accounts for offset
intersections (i.e. “dog-legged” or adjacent T-intersections) that functionally
are the same intersection, as well as allowing for misaligned streets and other
potential imperfections in the TIGER /Line geometry. The 15m distance is ap-
proximately the width of a typical two-lane urban street, including on-street
parking and sidewalks. We ignore edges that are completely contained within
an intersection (defined as a 7.5m radius from each constituent node), so that
short edges that connect within an offset intersection, expressway ramps and
similar elements of the street network do not inflate nodal degree.
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Figure S1: Distribution of counties with parcel data. We obtained year-built information for buildings in 226 counties
with urban areas, broadly spanning the US and accounting for ~33% of the urbanized area population.
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Figure S2: Algorithm to match parcels to street edges.
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Figure S3: Calculation of nodal degree. Each geometric node is buffered
(7.5m radius), and overlapping buffers are merged to create our dataset of nodes.
In the simple case (a), calculated nodal degree is simply the number of connected
edges at each geometric node. Where intersections are offset (b), our procedure
merges the adjacent 3-degree nodes to create a 4-degree node. In the complex
case of a divided highway (c), our procedure disregards edges that fall entirely
within the overlapping buffers; this allows us to ignore freeway ramps, median
connectors, and similar streets that do not functionally affect street network
connectivity. Source for underlying imagery: ESRI/Digital Globe.
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Figure S4: Growth in nodes versus building permit issuance. Compari-
son is for 1991-2013 in counties in our parcel-based series (N=224).

S1.3 Comparison to building permit data

Figure S4 compares our estimates of the growth in nodes from both the TIGER /Line
series (in blue) and the parcel-based series (in red) with building permit issuance

by county governments. Building permit data are from the US Census Bureau
Building Permit Survey. The linear best fit is also shown. The strong correla-
tion between permit activity and new nodes adds confidence to our methods for
constructing the historical time series of intersection growth.

S2 Open data

We provide a dataset with our three measures of street-network sprawl — nodal
degree, percentage of 4+ degree nodes, and percentage of deadends — for down-
load via the journal website. Standard errors are also included. We provide
annual data at the level of counties, metropolitan regions (CSAs and CBSAs),
and the entire United States. Note that the data are limited to urbanized areas,
defined as block groups where the majority of blocks were classified as urban
in the 2010 Census. For completeness, the dataset includes the full time series
from ~1750. However, due to inaccuracies in the county assessor data, which
records building ages, we caution against relying on data for the early part of
this series. Accordingly, this paper focuses on the period since 1920.

We also provide the full geographic data file for the stock of streets in 2013,
indicating the nodal degree of each intersection. This is provided in shapefile for-
mat, suitable for analysis with most Geographic Information Systems software,
and as a graph file that describes the network.

The data are documented and archived at http://dx.doi.org/10.5061/
dryad.3k502.


http://dx.doi.org/10.5061/dryad.3k502
http://dx.doi.org/10.5061/dryad.3k502

S3 Comparisons with alternative sprawl measures

Sprawl is a multi-dimensional characteristic of urban areas. Under one typol-
ogy [1], there are eight distinct dimensions of land-use patterns that characterize
sprawl, including density, centrality (the distance of development from the Cen-
tral Business District or CBD) and nuclearity (whether a metropolitan area has
a dominant urban center or is polynuclear in character). Preferred measures
of urban sprawl are somewhat discipline-dependent, reflecting different policy
interests and methodological traditions across disciplines. For architects such as
Duany and Plater-Zyberk [2], sprawl is inherently about the rigid segregation
of land uses, and urban design features such as the placement of parking in
the front setback of homes. Economists, in contrast, have tended to focus on
density, the scatteredness of urban development, and the size and spatial extent
of metropolitan areas [3, 4, 5, 6, 7]. In large part, this reflects the intellectual
history of urban economics, where the Alonso-Muth-Mills model, which posits
a monocentric city where all employment is in the CBD and households choose
their distance from the CBD by trading off housing and commuting costs, still
has great influence [8, 7, 9.

Our street network-based measures characterize sprawl as having a low nodal
degree of intersections, a high proportion of deadends, and a low proportion of
intersections of degree four or more. (In graph theory, the degree of a node is
the number of edges, in this case street segments, connected to the node, in this
case the intersection.) Our three measures are empirically or deterministically
related to similar ways to measure street connectivity, such as block length or the
ratio of links to nodes [10]. Other network metrics such as the network-length
linear density of nodes from each node, ratio of network-distance to geographic-
distance, and treeness (dendricity) [11] are also related, but are difficult to
measure in a time-series dataset such as ours where we cannot assign a year to
some edges and nodes.

As noted in the main text, our measures offer several important conceptual
and empirical advantages over alternatives such as density, spatial extent and
centrality. First, our measures are semi-permanent. In contrast to characteris-
tics such as density, which can change over time, the street network indicates
the degree of sprawl at the time it was laid down.

Second, the connectivity of the street network shows a strong theoretical
and empirical relationship with important externalities such as greenhouse gas
emissions. A high proportion of deadends and a low nodal degree of intersections
favor travel by the private car in several ways. Such street patterns typically
increase the ratio of network distance to Euclidean distance, which reduces the
generalized cost of driving relative to walking. In contrast, a gridded street
network tends to be more attractive to pedestrians, is conducive to mixed land
uses, allows more efficient service by public transit, and reduces travel speeds
by the private car through requiring frequent stops. Low nodal degree also
proxies for other factors which favor the private car, such as wider arterials and
longer distances between signalized intersections. Unfortunately, these elements
of walkability, and others such as sidewalk provision, cannot be measured due



to a lack of comprehensive or consistent data.

In contrast, there is a tenuous externality from sprawl when measured by
the amount of open space in the square kilometer surrounding a house [7]; by
the size or spatial extent of metropolitan areas [3, 4, 5, 6]; or by the extent to
which employment is located within a five-mile radius of the CBD [8]. Even the
commonly used measure of density has a less direct relationship to the external
costs of sprawl than the structure of the street network; density often proxies
for other characteristics of the built environment that affect vehicle travel, and
the relationship of street connectivity with total vehicle distance traveled, as
measured through elasticities, is three times that of population density [12].

Third, a street network-based approach offers extremely high spatial and
temporal resolution. Our units of analysis are street segments (edges) and
intersections. This provides us with the ability to conduct analysis at any spatial
scale, rather than being constrained by the aggregation units for census data or
the resolution offered by remote sensing technologies. Our measures of sprawl
vary within a city, in contrast to measures such as nuclearity and spatial extent
which are a characteristic of an entire metropolitan area. Moreover, our dataset
identifies the year that each street segment was built. In contrast, census-
based measures such as those in [13] are limited to ten-year intervals, and the
availability of remote-sensing data is even more constrained. For example, the
approach in [7] is limited to two years of analysis.

Fourth, our measures of sprawl are less susceptible to issues of scale de-
pendence than alternatives such as intersection density (the number of nodes
per unit area) or residential density. Such density measures vary depending on
the definition of areas; for example, whether parks, water or yet-to-be-developed
land are included when measuring surface area. This presents a particular prob-
lem with time-series analysis. If the geographic units are held constant (and thus
include land that is not developed in early years), such a measure will almost
invariable increase over time within a given geographic unit, as more intersec-
tions or housing units are built. Thus, density-based measures are best suited
for analyzing cross-sectional differences, rather than in the context of the time
series that we employ here. Unlike most existing measures which correspond,
ultimately, to an area density or geographically weighted average of some kind,
our measure amounts to a sum over intersections, and relates to their network
structure, regardless of spatial scale.

In any case, different measures of sprawl are often correlated. Figure S5
indicates the relationship between the nodal degree of intersections and three
alternative measures of sprawl: residential density, the intensity of development,
and a multi-dimensional sprawl index. Nodal degree, the percentage of nodes of
degree 4+, and the percentage of deadends correlate with the other measures in
the expected manner. The weakest relationship is with the impervious surface
area, which indicates that sprawl can be built with varying degrees of imper-
vious surface, for example depending on whether yards and public open spaces
are paved. The impervious surface data are are the basis for the analysis in
[7], although their measure (the extent to which development is “scattered”) is
constructed somewhat differently.

10



Hamidi & Ewing’s aggregated sprawl index (which considers street connec-
tivity as one element along with density, mix of uses, and the concentration
of population and employment in defined sub-centers) [13] is one example of a
composite index, often devised to rank urban areas according to their degree of
sprawl. [1] use a similar approach to [13], calculating six dimensions and then
summing them into a single index.

All the measures of sprawl also correlate in the expected manner with com-
mute mode share (% of workers commuting by modes other than driving alone)
and vehicle ownership. Given that urban form is one of many factors that af-
fects vehicle ownership and travel, along with income, preferences, and so on, it
is not surprising that there is considerable dispersion around the lines of best
fit (estimated by lowess). However, the directionalities of the relationships are
clearly evident in Figure S5.

S4 Additional results

Below are collected several figures and tables which complement or extend those
given in the main text. Explanations are given in the captions and in the main
text.

11



Figure S5: Correlations between alternative measures of sprawl. Log
density, commute mode share and vehicle ownership are calculated based on the
American Community Survey 2007-11. Impervious surface area is calculated
based on the National Land Cover Database 2006 [14]. Hamidi & Ewing sprawl
index is as reported in [13]. Diagonals provide the kernel density plot for each
measure, while off-diagonals plot the relationship between different measures
using a lowess smoother. A one-third random sample is used for visualization
purposes; data are aggregated to the census tract level.
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ST

Metropolitan Region

Mean nodal degree

% Degree 4+

% Deadend

1991 1999 2009 2013 1991-2013 1991 1999 2009 2013 1991-2013 1991 1999 2009 2013 1991-2013
Urbanized US 2.80 2.75 2.74 2.74 2.60 22.9 21.7 21.4 21.5 17.9 21.3 23.2 23.9 23.5 29.0
Harrisburg-York-Lebanon, PA 2.89 2.87 2.86 2.88 2.86 25.9 25.3 25.2 25.5 24.3 18.7 18.9 19.6 18.8 19.0
Dallas-Ft Worth, TX-OK 2.91 2.88 2.86 2.87 2.81 24.4 23.4 25.4 25.7 28.0 16.9 17.8 19.8 19.2 23.3
Oklahoma City-Shawnee, OK 2.95 2.91 2.88 2.88 2.74 28.4 26.7 25.1 24.9 18.4 16.5 18.1 18.7 18.4 22.1
Birmingham-Hoover-Talladega, AL 2.71 2.65 2.71 2.72 2.73 20.5 19.1 22.5 22.4 26.1 24.7 27.2 25.6 25.3 26.4
Orlando-Deltona-Dayt. Bch, FL 2.72 2.69 2.69 2.72 2.70 18.8 17.4 17.1 18.0 16.5 23.2 24.3 23.9 23.1 23.1
Denver-Aurora, CO 2.86 2.81 2.80 2.80 2.69 25.2 24.4 23.5 23.7 20.7 19.5 21.5 22.0 21.7 25.9
San Jose-San Francisco-Oakland, CA 2.69 2.67 2.68 2.69 2.69 19.7 19.0 21.6 21.8 27.3 25.2 26.0 27.0 26.4 29.4
Milwaukee-Racine-Waukesha, WI 2.92 2.88 2.86 2.87 2.67 29.2 28.3 27.3 27.9 22.7 18.6 20.0 20.4 20.4 27.8
New Orleans-Metairie-Hammond, LA-MS 2.98 2.95 2.87 2.88 2.66 34.8 33.9 31.1 30.8 21.9 18.6 19.6 22.0 21.5 27.7
Boston-Worcester-P’dence 2.71 2.67 2.70 2.70 2.66 15.5 14.8 15.3 15.2 14.3 22.1 24.1 22.7 22.6 24.0
Austin-Round Rock, TX 2.73 2.70 2.69 2.71 2.66 18.2 17.7 18.7 18.9 20.3 22.8 24.1 24.9 24.1 27.0
Memphis-Forrest City, TN-MS-AR 2.72 2.65 2.70 2.70 2.66 19.4 17.6 19.7 19.7 20.3 23.6 26.1 25.1 24.9 27.1
Hartford-West Hartford, CT 2.66 2.64 2.65 2.66 2.66 12.8 12.4 12.4 12.7 12.4 23.2 24.4 23.8 23.3 23.4
Philadelphia-Reading-Camden, PA-NJ-DE-MD 2.90 2.87 2.85 2.85 2.65 25.2 24.5 24.0 23.9 18.5 17.6 18.8 19.5 19.3 26.5
Indianapolis-Carmel-Muncie, IN 2.82 2.75 2.75 2.76 2.65 24.7 22.7 21.7 21.9 17.1 21.4 23.8 23.4 23.2 26.1
Miami-Ft L’dale-Pt St. Lucie, FL 2.90 2.84 2.81 2.83 2.65 24.2 22.7 21.8 22.6 18.7 17.1 19.1 20.3 19.9 26.9
New York-Newark, NY-NJ-CT-PA 2.86 2.82 2.81 2.82 2.65 23.1 22.5 21.6 22.0 16.5 18.7 20.1 20.1 19.9 25.9
Minneapolis-St. Paul, MN-WI 2.87 2.81 2.78 2.80 2.64 27.2 25.3 24.0 24.8 19.9 19.9 22.0 23.0 22.5 27.9
Columbus-Marion-Zanesville, OH 2.79 2.74 2.72 2.73 2.64 22.1 20.1 19.3 19.3 14.7 21.8 23.2 23.8 23.2 25.5
St. Louis-St. Charles-F’ton, MO-IL 2.73 2.68 2.70 2.70 2.64 20.9 19.9 20.3 20.1 18.1 24.2 26.1 25.2 25.1 27.3
Chicago-Naperville, IL-IN-WI 2.94 2.90 2.86 2.87 2.61 29.8 28.4 27.0 27.1 16.7 17.9 19.3 20.3 19.9 27.7
Detroit-Warren-Ann Arbor, MI 2.94 2.88 2.85 2.86 2.59 28.6 25.9 24.6 24.9 13.0 17.1 18.9 20.0 19.5 27.1
Phoenix-Mesa-Scottsdale, AZ 2.83 2.75 2.71 2.72 2.59 20.8 18.4 16.1 15.9 10.2 19.0 21.5 22.4 22.1 25.8
Los Angeles-Long Beach, CA 2.79 2.74 2.72 2.72 2.59 22.4 21.0 21.9 21.8 20.4 21.9 23.4 24.9 24.7 30.9
Pittsburgh-New Castle-Weirton, PA-OH-WV 2.79 2.77 2.73 2.75 2.58 22.6 22.5 21.6 22.0 19.6 21.6 22.7 24.1 23.6 30.8
Salt Lake City-Provo-Orem, UT 2.69 2.65 2.63 2.64 2.58 18.4 17.1 16.4 16.3 13.6 24.7 26.3 26.6 26.0 27.9
Seattle-Tacoma, WA 2.58 2.55 2.58 2.57 2.56 20.0 19.3 18.0 17.9 13.1 31.0 32.0 30.1 30.2 28.5
Cleveland-Akron-Canton, OH 2.86 2.82 2.76 2.78 2.55 24.7 23.6 21.8 22.4 15.4 19.5 20.9 22.7 22.2 30.3
Sacramento-Roseville, CA 2.64 2.61 2.61 2.61 2.55 15.6 15.1 15.4 15.4 14.8 25.7 27.0 27.3 27.2 30.1
Virginia Beach-Norfolk, VA-NC 2.64 2.58 2.60 2.60 2.54 20.8 19.4 20.2 20.2 19.2 28.7 30.7 30.3 30.2 32.4
Washington-B’more-Arling., DC-MD-VA-WV-PA 2.62 2.58 2.57 2.59 2.54 18.3 17.5 17.5 18.2 18.2 28.0 30.0 30.2 29.8 31.9
Tampa-St. Petersburg-Clearwater, FL 2.82 2.80 2.76 2.77 2.54 22.1 21.6 21.4 21.6 19.2 19.8 20.7 22.6 22.1 32.7
Kansas City-Overland Park-Kansas City, MO-KS 2.87 2.82 2.77 2.77 2.54 25.7 24.7 23.3 23.3 17.9 19.2 21.6 23.3 23.1 32.1
Las Vegas-Henderson, NV-AZ 2.81 2.70 2.62 2.63 2.52 20.6 17.3 15.5 15.7 12.5 19.9 23.9 26.8 26.4 30.5
Portland-Vancouver-Salem, OR-WA 2.71 2.68 2.63 2.64 2.46 23.9 22.6 20.9 20.9 13.5 26.3 27.4 28.7 28.4 33.7
Grand Rapids-Wyoming-Muskegon, MI 2.82 2.76 2.71 2.71 2.46 24.4 22.3 20.3 20.3 10.0 21.4 23.2 24.9 24.5 32.2
Buffalo-Cheektowaga, NY 2.96 2.92 2.87 2.89 2.45 25.3 24.1 23.1 23.7 13.5 14.8 16.0 17.9 17.4 34.3
Houston-The Woodlands, TX 2.82 2.77 2.69 2.69 2.44 26.2 24.7 23.1 23.0 16.9 22.0 23.9 27.2 26.9 36.3
Jacksonville-St. Marys-Palatka, FL-GA 2.74 2.67 2.63 2.64 2.43 22.0 20.1 18.9 19.2 13.0 24.0 26.6 27.7 27.4 34.8
San Antonio-New Braunfels, TX 2.93 2.87 2.78 2.79 2.43 28.0 26.0 24.1 24.0 13.9 17.6 19.7 22.8 22.7 35.7
Nashville-Davidson—Murfreesboro, TN 2.67 2.59 2.57 2.58 2.42 16.0 15.1 15.6 15.7 15.3 24.5 28.2 29.2 28.7 36.5
San Diego-Carlsbad, CA 2.62 2.59 2.56 2.57 2.42 19.5 18.2 17.6 17.7 12.7 28.6 29.4 30.6 30.3 35.5
Cincinnati-Wilmington-Maysville, OH-KY-IN 2.58 2.53 2.52 2.53 2.40 18.0 17.1 16.9 17.2 15.0 30.0 31.8 32.3 32.1 37.7
Rochester-Batavia-Seneca Falls, NY 2.80 2.76 2.73 2.73 2.39 16.9 16.3 16.2 16.3 13.2 18.5 20.1 21.8 21.6 37.3
Louisville/Jefferson Co.-Eliz.—Madison, KY-IN 2.65 2.60 2.59 2.59 2.35 18.3 17.5 17.3 17.3 12.7 26.7 28.6 29.2 29.1 39.0
Raleigh-Durham-Ch. Hill, NC 2.56 2.46 2.47 2.48 2.34 15.1 13.5 14.0 14.3 13.0 29.3 33.7 33.7 33.1 39.5
Charlotte-Concord, NC-SC 2.59 2.49 2.48 2.49 2.32 14.1 12.5 12.7 12.9 10.7 27.6 31.8 32.3 32.0 39.4
Atlanta—Athens-Clarke Co—Sandy Spr., GA 2.52 2.43 2.42 2.43 2.31 11.5 10.3 10.4 10.6 9.2 29.6 33.5 34.2 33.7 39.2
Greensboro—Winston-Salem—High Point, NC 2.62 2.56 2.55 2.55 2.29 15.3 14.4 15.0 15.0 14.1 26.8 29.3 30.3 30.1 42.4
Greenville-Spartanburg-Anderson, SC 2.76 2.66 2.64 2.64 2.29 15.1 13.8 14.1 13.8 10.0 19.6 23.6 24.9 24.8 40.8

Table S1: Rankings of 50 largest US metropolitan areas by change in nodal degree, 1991-2013. The regions at
the top of the table grew in the most connected manner, while those at the bottom grew with the most sprawl in recent years.
The change from 1991-2013 is an estimate of the average for new intersections, calculated based on changes in the stock of

intersections (i.e., their number and average properties).



Mean nodal degree

% Degree 4-

% Deadend

County 1993-97 2008-12 Change 1993-97 2008-12 Change 1993-97 2008-12 Change
All counties with par- 2.62 2.80 0.19 14.8 18.6 3.8 26.6 19.1 -7.5
cel data

Travis, TX 2.62 3.26 0.64 16.5 41.9 25.3 27.1 8.0 -19.1
Mecklenburg, NC 2.21 2.72 0.51 7.1 16.1 9.0 43.1 22.1 -21.0
Alachua, FL 2.56 3.00 0.44 14.7 25.9 11.3 29.3 13.0 -16.4
Iredell, NC 2.28 2.72 0.43 6.1 12.4 6.3 38.9 20.3 -18.6
Franklin, OH 2.56 3.00 0.43 9.5 17.0 7.5 26.5 8.6 -17.9
Pierce, WA 2.40 2.81 0.41 9.8 18.3 8.4 35.1 18.7 -16.3
Coweta, GA 2.23 2.64 0.41 6.4 10.8 4.4 41.6 23.4 -18.2
St Louis, MO 2.35 2.74 0.39 9.6 13.7 4.1 37.2 19.9 -17.2
Hinds, MS 2.61 2.99 0.39 17.5 20.7 3.2 28.5 10.8 -17.7
Ocean, NJ 2.66 3.04 0.39 16.4 30.9 14.5 25.4 13.3 -12.0
Broward, FL 2.67 3.05 0.38 15.9 30.7 14.8 24.7 12.9 -11.7
Orange, FL 2.63 3.01 0.37 12.8 24.4 11.6 24.8 11.9 -12.8
Union, NC 2.30 2.67 0.36 9.8 12.4 2.6 39.7 22.9 -16.8
Anoka, MN 2.68 3.04 0.36 15.2 26.6 11.4 23.7 11.4 -12.2
Leon, FL 2.54 2.88 0.34 11.7 20.3 8.6 28.6 16.0 -12.7
Clay, FL 2.56 2.90 0.34 14.0 24.8 10.7 28.8 17.3 -11.6
Thurston, WA 2.42 2.73 0.32 11.8 12.7 0.9 35.1 19.7 -15.4
Miami Dade, FL 2.83 3.14 0.31 19.3 31.2 11.9 18.4 8.6 -9.8
Harford, MD 2.56 2.86 0.30 13.7 22.2 8.6 28.9 18.1 -10.8
Fort Bend, TX 2.43 2.73 0.29 12.4 15.0 2.6 34.6 21.2 -13.4
Gaston, NC 2.36 2.64 0.29 11.7 21.8 10.1 37.9 28.6 -9.2
Escambia, FL 2.67 2.95 0.28 19.0 28.1 9.1 26.0 16.3 -9.7
Wake, NC 2.29 2.58 0.28 11.0 13.1 2.1 40.8 27.7 -13.1
Jackson, OR 2.59 2.87 0.28 13.5 26.9 13.4 27.2 19.8 -7.3
Duval, FL 2.37 2.65 0.28 10.3 14.6 4.3 36.5 24.9 -11.7
Hillsborough, FL 2.59 2.86 0.27 12.3 16.0 3.7 26.4 15.0 -11.5
Polk, FL 2.62 2.88 0.26 11.9 20.3 8.4 25.1 16.3 -8.8
Collier, FL 2.60 2.86 0.26 13.8 21.2 7.3 26.7 17.4 -9.3
Bay, FL 2.76 3.01 0.26 19.1 27.9 8.8 21.8 13.3 -8.4
Northampton, PA 2.79 3.04 0.24 17.4 27.0 9.6 19.0 11.7 -7.3
Pinellas, FL 2.62 2.85 0.23 15.5 24.8 9.3 26.7 19.8 -6.9
Seminole, FL 2.59 2.82 0.23 13.6 19.3 5.6 27.2 18.7 -8.5
Denver, CO 3.15 3.37 0.22 40.2 39.2 -1.0 12.7 1.1 -11.7
Palm Beach, FL 2.56 2.78 0.22 14.2 21.7 7.5 29.1 21.7 -7.3
Washington, MN 2.63 2.84 0.21 14.6 14.7 0.1 25.9 15.5 -10.4
Lake, FL 2.59 2.79 0.20 13.0 14.0 0.9 27.0 17.3 -9.7
Hennepin, MN 2.60 2.80 0.20 16.3 19.4 3.0 28.0 19.5 -8.5
Pasco, FL 2.61 2.80 0.19 12.1 13.1 1.0 25.7 16.4 -9.3
Onslow, NC 2.21 2.40 0.19 10.5 14.5 4.0 44.6 37.2 -7.3
Sarasota, FL 2.79 2.98 0.18 15.7 15.2 -0.5 18.2 8.7 -9.4
Okaloosa, FL 2.55 2.74 0.18 11.7 18.6 6.9 28.1 22.4 -5.7
Middlesex, MA 2.61 2.79 0.17 9.8 11.5 1.7 24.2 16.5 -7.7
Queens, NY 3.21 3.38 0.17 38.3 43.7 5.5 8.8 3.0 -5.7
Johnston, NC 2.31 2.47 0.17 8.2 14.0 5.7 38.8 33.3 -5.6
Brevard, FL 2.66 2.83 0.17 13.0 15.3 2.3 23.3 16.2 -7.1
Tarrant, TX 2.73 2.89 0.16 17.3 21.3 4.0 22.0 16.0 -6.0
Citrus, FL 2.98 3.13 0.15 20.3 22.3 2.0 11.2 4.7 -6.5
Collin, TX 2.82 2.96 0.13 22.1 20.7 -1.4 20.0 12.6 -7.4
Denton, TX 2.76 2.89 0.13 17.2 15.6 -1.6 20.8 13.4 -7.3
Volusia, FL 2.78 2.90 0.12 19.1 20.6 1.5 20.5 15.2 -5.2
Osceola, FL 2.79 2.90 0.10 19.6 17.7 -2.0 20.1 14.0 -6.1
Snohamish, WA 2.47 2.57 0.10 13.9 15.5 1.6 33.3 29.1 -4.2
Santa Rosa, FL 2.64 2.73 0.10 13.4 10.4 -3.0 24.8 18.5 -6.3
Delaware, OH 2.64 2.72 0.09 12.3 19.2 6.9 24.3 23.4 -0.9
Kitsap, WA 2.48 2.56 0.08 14.9 11.5 -3.3 33.5 27.7 -5.8
Dakota, MN 2.71 2.79 0.07 18.7 17.8 -0.9 23.6 19.5 -4.2
Polk, TA 2.78 2.84 0.07 24.6 24.8 0.1 23.5 20.3 -3.2
Alamance, NC 2.65 2.71 0.06 18.2 17.3 -0.9 26.6 23.0 -3.6
Clark, WA 2.55 2.62 0.06 15.2 17.0 1.9 29.9 27.7 -2.2
Essex, MA 2.68 2.73 0.05 10.0 17.0 7.0 21.2 22.2 1.0
St Johns, FL 2.44 2.48 0.04 13.5 13.0 -0.5 34.8 32.3 -2.5
Mesa, CO 2.62 2.66 0.04 16.0 19.6 3.6 26.9 26.7 -0.3
Riverside, CA 2.53 2.57 0.04 11.1 13.2 2.1 29.1 28.1 -1.0
Butler, OH 2.32 2.34 0.02 10.9 10.7 -0.2 39.7 38.5 -1.2
Spokane, WA 2.67 2.69 0.02 19.8 17.6 -2.2 26.6 24.5 -2.2
Charlotte, FL 3.00 3.02 0.02 16.2 19.4 3.2 8.2 8.8 0.6
Los Angeles, CA 2.68 2.69 0.01 19.0 19.3 0.3 25.5 25.0 -0.5
St Lucie, FL 3.01 3.02 0.01 19.5 25.4 5.9 9.1 11.7 2.7
Bristol, MA 2.60 2.60 0.00 10.5 9.1 -1.4 25.4 24.5 -0.9
King, WA 2.84 2.81 -0.03 17.3 23.1 5.7 16.6 20.8 4.2
Cameron, TX 2.95 2.92 -0.03 26.6 19.9 -6.6 15.7 13.8 -1.9
Kings, NY 3.51 3.48 -0.03 53.6 51.7 -1.9 1.1 1.7 0.6
Lee, FL 3.00 2.96 -0.04 21.1 24.3 3.2 10.7 14.3 3.6
Monroe, NY 2.56 2.52 -0.04 13.6 10.1 -3.5 28.8 29.2 0.4
Marion, FL 2.95 2.89 -0.06 20.7 19.2 -1.5 13.0 15.1 2.1
York, PA 2.75 2.68 -0.07 11.7 21.1 9.4 18.2 26.4 8.2
Plymouth, MA 2.80 2.73 -0.08 9.1 8.0 -1.1 14.4 17.7 3.4
Summit, OH 2.55 2.45 -0.10 13.9 11.9 -2.0 29.4 33.3 3.9
Indian River, FL 3.15 2.97 -0.18 30.4 16.9 -13.6 7.5 9.9 2.4
Manatee, FL 2.90 2.70 -0.20 21.6 15.8 -5.8 15.8 22.9 7.1

Table S2: Rankings of counties with parcel data by recent changes.
Counties are ordered by the change in nodal degree of new development in
1993-1997 (when sprawl was at its peak) compared to 2007-12 (the most recent
five-year period in our parcel-based series). Many of the counties at the top
of the list, including five of the top six, have been the site of new regulations
or plans to promote connected streets, at least in part of the county. Source:
counties with parcel data, restricted to those with at least 100,000 population
and at least 100 new nodes in each time period. An unweighted mean over
individual years is used to construct the aggregated five-year periods.
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Figure S8: Uniformity of shifts in sprawl. Nonparametric estimates of the
fraction of deadends (upper) and fraction of degree-four nodes (middle) and
mean degree (lower, also in main text) as a function of (A) their distance from
city center, (B) the mean nodal degree within 1 km, and (C) the local population

density. Over time the relationships shift roughly uniformly and then reverse
uniformly. Shaded bands show 95% confidence intervals.
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S5 Omnline maps and video

Mean nodal degree of the entire road stock in 2013, and mean nodal degree
of additions to the road stock since 1999, are plotted with census blockgroup
resolution for a number of metropolitan areas, on an online supplementary data
site, http://sprawl.ihsp.mcgill.ca/PNAS2015 /bgmaps/.

Video animations of the street-by-street development of selected counties in
our parcel dataset are available at http://sprawl.ihsp.mcgill.ca/PNAS2015.

S6 Robustness tests

Our core contribution rests on the proper identification of the construction date
of each road intersection. To assess the robustness of our dating algorithm for
our parcel-derived dataset, we consider a number of variations on our procedure
for determining the date of nodes.

In general, we follow a two-step process. First, we assign a year to each
edge, based on the year of the oldest building on that edge. Using the oldest
building allows us to ignore the effects of recent development and rebuilding.
Second, we assign a year to each node, based on the year of the most recent
connected edge. This is because the connectivity of a node is determined by
the most recent edge. For example, when a newly constructed street creates a
3-degree node by terminating at an existing road, the node did not exist prior
to the construction of the most recent edge.

Possible concerns with this method are:

Measurement error: Year built information in the parcel data could be im-

perfect. Because we use extrema, single miscoded dates in the data we
receive from counties would determine the year recorded for an edge.
We carry out sensitivity tests for the this problem by considering different
points in the distribution of parcels’ “year built” on each edge. Below we
show wvalues using the 2nd oldest, rather than the oldest, parcel on each
edge. Similar results are obtained when using the 5th percentile.

Low parcel numbers: When edges are treated equally in determining node
dates, small numbers of parcels on one edge can also cause a bias because
the chance of them all being more recently rebuilt houses is higher.

We treat this issue by calculating a set of dates using only edges with five
or more parcels on them.

In-fill and rebuilding: When most homes are of more recent vintage than the
original road network, a reliance on parcel data becomes problematic.
We test against this third issue through our development of a time series
using only TIGER wvintage information. This TIGER (stock) series cor-
roborates our main findings using the more detailed parcel-derived time
series (see Figure 1 in the main text). Another rather strong test for the
importance of redeveloped areas which did not affect the preexisting road
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structure is to consider the oldest year built among all parcels on edges
connected to a node.

Figure S9 presents national average time series for three alternative methods
for calculating node age, incorporating the robustness tests described above.
Also included is our baseline estimate, “Most recent”, which is used in the main
analyses and is shown here in black. Years calculated by the “Most recent
(2nd oldest parcel)” method address the “measurement error” and “low parcel
number” concerns: we drop all edges with fewer than 5 parcels, and we select
the second oldest parcel on each edge to determine the date for the edge. As
with our baseline method, the most recent edge is then used to characterize the
construction date of the intersection.

The “Oldest” year calculation dates each node by the oldest parcel among all
adjoining edges, which addresses the “infill and rebuilding” concern. However,
this method is still subject to the other concerns, and also raises the extra
problem that intersections created on existing roads (as in the example above)
will not be dated correctly. Moreover, recent years may be biased towards
deadends. For example, in 2012, the only degree-four nodes will be those where
the range across edges is zero, i.e. both the oldest and most recent edge have a
year of 2012.

Finally, the “3rd oldest” variant is a compromise between the latter two.
It uses the date of the third oldest edge when there are at least three edges,
which amounts to the same as our baseline estimate for degree-one (deadend)
and degree-three intersections, but also provides a sensitivity check for the “infill
and rebuilding” concern.

Figure S9 shows that all variants of our algorithm indicate a flattening out
of road network sprawl in the mid/late 1990s. Moreover, there is strong con-
sistency about the turnaround in recent years, with the exception of the last
few years in our “Oldest” variant. The “3rd oldest” variant, which incorporates
an extra robustness restriction, agrees closely with our baseline values. Our
other qualitative observations appear also to be robust. Because deadends have
only one edge, they are dated the same using the “Most recent” and “Oldest”
methods. Thus, the difference in the fraction of deadends, shown in the lower
right panel, reflects the difference in the denominator, driven by the number of
degree-three and degree-four nodes assigned to each year.

A further robustness test involves restricting the streets considered in our
analysis to those that have street names in the US Census Bureau TIGER/Line
files. This can help to eliminate service roads, freeway ramps, driveways and
similar streets from the dataset. Eliminating unnamed streets increases mean
nodal degree by <0.05, and does not change any of the qualitative conclusions.
The date of the turnaround in sprawl is unchanged.
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Figure S9: Alternate methods to estimate the date of each node. We
assume that each edge was constructed at the time of the earliest parcel (build-
ing) on that edge, except as specified below. To estimate the year in which a
node was built, we compare four methods. “Most recent” is our preferred mea-
sure, and is used in our analyses; the year of the most recent edge gives the
year of the node. “3rd oldest” is the same as “most recent” for deadends and
degree-3 nodes, but uses the year of the third oldest edge for degree 4+ nodes.
“Oldest” uses the earliest year among the set of connected edges. “Most recent
(2nd oldest parcel)” (*) is similar to “most recent,” but the year of each edge
is given by the second oldest rather than the oldest parcel. This last method
only considers edges where Npgrcets > 5, i.e. edges with at least five parcels
with year-built information. See the text for an interpretation of the alternate
methods.
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S7 Further acknowledgements

We relied heavily on open source software tools and would like to acknowledge
Matplotlib [15], Pandas [16], and Git (http://git-scm.com/). We are grateful
to the following counties who kindly licensed free or discounted parcel data to us
for research purposes: Anoka, MN; Athens, OH; Baker, FL; Bay, FL; Belmont,
OH; Butler, OH; Carver, MN; Clark, WA; Clearwater, ID; Cowlitz, WA; Cum-
berland, NC; Dakota, MN; Defiance, OH; Delaware, OH; Denton, TX; Elmore,
ID; Gaston, NC; Grant, WA; Hancock, MS; Haywood, NC; Hennepin, MN;
Hillsborough, FL; King, WA; Kitsap, WA; Lake, IL; Lawrence, OH; Los Ange-
les, CA; Mason, WA; Milwaukee, WI; Monroe, NY; Moore, NC; Ottawa, OH;
Pierce, WA; Pinellas, FL; Burke, NC; Ramsey, MN; Riverside, CA; Saratoga,
NY; Scott, MN; Skamania, WA; Snohamish, WA; Spokane, WA; Spotsylvania,
VA; St Louis, MO; Summit, OH; Tarrant, TX; Thurston, WA; Vanderburgh,
IN; Walla Walla, WA; Warren, NY; Washington, MN; Wichita, TX; Wood, OH,;
Bronx, NY; Kings, NY; New York, NY; Queens, NY; Richmond, NY.
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